Bidirectional processing Il:

feedforward & feedback networks for
recognition

Focus on feedback computations



computational problems

Inferences about the
image involve various
inferences:

* types of features &
attributes (shapes,
material)

® recognition over
levels of
abstraction (parts,
objects, actions,
scenes)

* spatial scales

e relationships




Descriptions are inferences of object properties and relationships
— i.e. causes of image intensities, not of image intensity patterns

A crucial assumption is that these inferences are based on
deep, generative knowledge of how virtually any natural
image could be produced



computational problems

Need to solve scalability

Solving toy (low-dimensional) problems rarely
scales up to deal with the complexity of natural
images.

In object recognition, humans have the capacity to
quickly deal with an enormous space of possible
objects (30 to 300K) as they appear in different
contexts in natural images for different tasks.




computational problems

Need to model uncertainty

vision is concerned with causes of image intensity patterns, but the
causes of behavioral relevance are encrypted and confounded

many hypotheses about cause can be consistent with the same
local image evidence

local variations in image evidence can be consistent with the same
cause

accurate perceptual decisions resolve these ambiguities by
combining lots of image evidence with built-in knowledge



computational problems

Need to solve task flexibility

Vision stimulates and support answers to a

Im

itless range of questions.

Jus’

e.g. description of the fox

uman vision doesn't

' recognize, It interprets scenes.

“One can see that there is an animal, a fox—in fact a baby fox. It is emerging from behind the base of a tree not too far from the
viewer, is heading right, high-stepping through short grass, and probably moving rather quickly. Its body fur is fluffy, reddish-brown,
relatively light in color, but with some variation. It has darker colored front legs and a dark patch above the mouth. Most of the body
hairs flow from front to back...and what a cute smile, like a dolphin.”



What is missing from feedforward models?

ascending pathway

V1 V2 V3... V(n)

Superficial 1

4 A+\\**\\* *\»f 4

!

Deep 6 4':,—

LGN descending pathway
(feedback)

R ——— 6

Current Biology

Shipp, S. (2007). Structure and function of the cerebral cortex. CURBIO, 17(12), R443-9. doi:10.1016/j.cub.2007.03.044



What is missing from feedforward models?
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Lateral organization
* representation and linking of features at a similar level of abstraction
* self-organizing topographical maps
* efficient image coding to explain receptive field properties

 machine learning methods for grouping



What is missing from feedforward models?
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relation to Bayes?
p(S|I) = P(If()lz)a(S)

p(S|I) o< p(I — f(5))p(S5)

/

does the visual system use built-in knowledge of how images
are naturally generated to predict the input |, based on
candidate “explanations” f(S)?

If so, such a mechanism could be used to test and sort
through competing explanations



Sayesian perspective: two
computational strategies

p(object | tmage)

Discriminative mechanisms Feedforward

e Computational/behavioral speed and accuracy requires
effective diagnostic features to deal with the enormous
variation within a pattern/object category

VanRullen, R., & Thorpe, S. J. (2001). The time course of visual processing:
from early perception to decision-making. Journal of Cognitive
Neuroscience, 13(4), 454—-461.

Generative mechanisms plmage | object) X p(object)*
feedback

® Provide flexibility, generalization beyond training

* recall bayes: p(object | image) « p(image | object) X p(object)



Can feedback help with the local
uncertainty, scalability anad
flexibility problems

Fine-scale recognition and segmentation
Unfamiliar objects/appearances
Learning given only a few examples

Bootstrap learning problem:
How to learn when objects aren’t experienced in isolation?

Domain-specific compositional models

Automatic or consciously driven?

The executive metaphor
expertise at various levels of abstraction



local uncertainty,
MISSINg data
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Top-down, generative models?  “explaining away”




Extraneous data: recognition despite cast shadows
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Cavanagh P (1991) What's up in top-down processing? In: Representations of Vision: Trends and tacit assumptions in
vision research (Gorea A, ed), pp 295-304. Cambridge, UK: Cambridge University Press.
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Object variations that haven't
been seen before

can recognize as scissors AND

SN, A \?" | estimate an articulation

hard to allow for articulation without an object model



object model

parts/features

parts/features

measurements

parts, patches, fragments st LN AN A\ AN AN /s
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Object variations that haven't been seen before:
Compositional architectures for representation

Head +
Torso

discountinig relation

Head + Torso
(straight)

Head

T\

Left Torso

Baseball
Player
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Ip detalls
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Right Torso

N

Right Torso
+ Right Leg

basic logical operation: detect “disjunctions of conjunctions”

explicit recognition at multiple Levels



Doesn’'t mean that feedback is necessary for
recognition (Thorpe et al.)

But top-down feedback may be important for

® achieving high-performance given uncertainty,
noise, clutter

® task flexibility

® [earning new object models



Contrast predictive coding with strictly feedforward
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Disambiguation

Predictive coding: suppress lower-level features that
are consistent with a confident high-level
interpretation. Reduce metabolic costs, signal new
unexplained incoming information,

Analysis-by-synthesis. Bind lower-level information
that might be required for executive tasks, e.g. fine-
grain. : enhance lower-level consistent features and/or
suppress inconsistent ones. Useful for representation
and interpretation of novel patterns? Dealing with
clutter?



How can one study feedback in humans?
Psychophysics? Large-scale imaging?

take advantage of the hierarchical
structure of visual cortical areas

look for effects of Spatlal context small receptive larger receptive fields,
on eal’|y, local processing fields, integration of features into

local features global forms



...S0me caveats
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fMRI activity in V1
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V'1 activity decreases when the diamond shape is

one of the perceptual
states - a “diamond”
shape

Murray, Kersten, Olshausen, Schrater, & Woods (2002)
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“predictive coding” |
through suppression of consistent gesi
features at lower levels Y

Feedforward

Lower area errorsignal

Input —)@
Inhibition ' |

Feedback
prediction

e.g. Rao, R. P., & Ballard, D. H. (1997). Dynamic model of visual recognition predicts
neural response properties in the visual cortex. Neural Comput, 9(4), 721-763.



Feedforward

Lower area errorsignal

Predictive
estimator
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Feedforward

Lower area errorsignal
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Feedforward

Lower area errorsignal
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summary: resolve ampiguity
using high-level knowledge

Exploit the hierarchical organization of object knowledge, and use
feedback to solve ambiguity through “explaining away”

‘predictive coding” as top-down error detection

e suppress lower-level responses to features “explained” by
a higher-level interpretation

and/or amplify those responses (“residuals”) that are not
explained

cf. Mumford, 1992; Rao & Ballard, 1999

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical
Microcircuits for Predictive Coding. Neuron, 76(4), 695-711.



..summary so far

Evidence for suppression of local activity in V1 as a

conseqguence of higher-level, global perceptual
organization—i.e. suppression when all the local

features have been “explained”.

p(S|I) o< p(I — f(S))p(S)

But is there another explanation for the tMRI results?
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Return to the challenge of task flexibility

Humans can not only localize and
recognize object categories, they can

e parse, describe and precisely
segment an image, and lots
more, such as measure
attributes and relations, infer
intent, ...

e rapidly learn new object models
under difficulty segmentation
conditions

[ earning to recognize and segment camouflaged novel objects can be
done quickly



Bringing nature to the lab. Callionima moths on the left show disruptive camouflage patterns. The garment in
the middle image replicate images of the woodland background. Texture mapping was used by Brady and
Kersten (2003) to mimic this for the digital embryo on the right. This introduces false positive object
boundaries, and apparent shape from shading cues.



Virtual morphogenesis

Brady, M. J., & Kersten, D. (2003).
Bootstrapped learning of novel objects.
Journal of Vision, 3(6), 413-422.

Brady, M. J., & Kersten, D. (2003).
Bootstrapped learning of novel objects.
Journal of Vision, 3(6), 413-422.



How do humans acquire prior knowledge of object classes? There is a,
target object in “plain view” in this figure. Without training, it is
impossible to detect or draw a line around its boundary.

40
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If an observer has to opportunities to see .
colored birds, this could help the
observer to learn about the forms that
birds can take. Then at some future time,
it could use this knowledge to see birds
whose color does not distinguish it from
the background, e.g. a different kind of
bird, or under more difficult viewing
conditions, such as during the night or
fog. This is “opportunistic learning”

.




L
mouflaged object

R S

’ ‘,".'



First 4 scenes (out of 15) of a motion training movie.




......

test images in which the objects were ‘Z.'{- :
given new camouflage, and presented S
against new backgrounds. |

All observers were able to learn [ et
opportunistically, and some were also
able to learn from the camouflaged
training images. This fisure shows a
perfect segmentation by an observer
after training.



Flexibility

Limitations to current recognition algorithms as
models of biological/human vision?

Humans generalize far beyond
training data to novel images/

forms

To what extent does human visual flexibility, ability
to generalize rely on deep generative knowledge?



How deep”?

depth tn terms of causes,
not network depth

http:/Www.pauldebevec.com

L multiple layers 3D rendering
emotion/intent muscles . Image
of soft tissue parameters
<
deeper

Insights from computer graphics...

Take a look at faces, materials such as hair and fluids,
and body pose



Message from computer graphics is as deep as you
can given processing limitations

Rendering the Human Face

human likeness

https://developer.nvidia.com/faceworks

General message for human visual
neuroscience is "deep, but not too deep”.

“How to cheat and get away with it?”


https://developer.nvidia.com/faceworks

How deep”?

multiple layers 3D rendering

emotion/intent muscles . image
of soft tissue parameters
4 /[
deeper
lllumination?
Sources, shadows, inter-reflections,..
imations?
3D shape? 2D shape approximations’:
Appearance image

Material, e.g. sub-

. approximations?
surface scattering? PP

deeper



lra — NVIDIA Face Works

https://youtu.be/7fgEAzMZhJ



Hair

"

hair care products have the highest sale
volume of all non-food items in the US



What does It take to
generate realistic hair?




‘Pan’ peg /7
Sasquatch software trom www.worley.com



http://www.worley.com

Halr can pbe...

e wavy, curly, straight, spiky, stiff, buzzed, shaved, parted, neatly-
combed, tamed, long, short, cropped

e thick, full, lustrous, bushy, coarse, wiry
e thin, scraggly, fine, baby-fine, wispy, limp, flat, balding, receding

e black, brunette, brown, chestnut-brown, honey-blond, blond,
golden-blond, ash-blond, auburn, red, strawberry-blond, gray,
silver, white, salt-and-pepper

* permed, dyed, bleached, highlighted, weaved
e praids, ponytail, pigtails, bun, twist, bob, ringlets, flip, bangs, buzz
 layered, feathered, chopped, gelled, spiked, slicked down

e terminal and vellus



Viscous fluids

Discrete Viscous Threads

Miklos Bergou
Basile Audoly
Etienne Vouga
Max Wardetzky
Eitan Grinspun

Columbia University

UPMC Univ Paris 06 & CNRS
Columbia University
Universitat Goéttingen
Columbia University



Body pose, actions

Toshev, A., & Szegedy, C. (2013). Deeppose: Human pose estimation via deep neural networks. arXiv Preprint arXiv:1312.4659.

X. Chen and A L. Yuille. Articulated Pose Estimation with Image-Dependent Preference on Pairwise Relations. NIPS 2014



global

http://astro.temple.edu/~tshipley/ptlt_movies/mlwalk2.mov

http://www.biomotionlab.ca/Demos/BMLwalker.html
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http://www.biomotionlab.ca/Demos/BMLwalker.html

Current inferential models of human visual recognition are not very
“deep” 1n the sense of relying on inductive biases, generative models
that could allow rapid learning from few samples, the ability to deal
with almost any image (familiar or not).

Need to understand the critical dimensions that avoid the uncanny
valley without computations and representations unlikely to exist in
the brain. I.e. the “right” kind of generative model.

Need to understand how to model statistical regularities in classes of
natural images. Linear methods are inadequate.

Need for compositional models, grammars, in the spirit of
“recognition-by-components”™



